Current Issue : January-March Volume : 2022 Issue Number : 1 Articles : 5 Articles
The world is living the fourth industrial revolution, marked by the increasing intelligence and automation of manufacturing systems. Nevertheless, there are types of tasks that are too complex or too expensive to be fully automated, it would be more efficient if the machines were able to work with the human, not only by sharing the same workspace but also as useful collaborators. A possible solution to that problem is on human–robot interaction systems, understanding the applications where they can be helpful to implement and what are the challenges they face. This work proposes the development of an industrial prototype of a human–machine interaction system through Augmented Reality, in which the objective is to enable an industrial operator without any programming experience to program a robot. The system itself is divided into two different parts: the tracking system, which records the operator’s hand movement, and the translator system, which writes the program to be sent to the robot that will execute the task. To demonstrate the concept, the user drew geometric figures, and the robot was able to replicate the operator’s path recorded....
When the two arms of the robot are transporting the heavy loads together, a new parallel mechanism is formed.,e actuator input selection and optimization of the parallel mechanism are basic and important problems in mechanism research. In this paper, a 2- RPPPS dual-arm robot is taken as the research object. Firstly, based on the screw theory and input selection principle, 158 reasonable schemes are obtained. ,en, an evaluation mechanism is established to screen out the schemes that do not conform to the input selection principle. ,en, the end effector of the parallel mechanism moves along two different trajectories. Using the particle swarm optimization algorithm, the inverse kinematics solution of each trajectory is obtained, and the velocity and acceleration of each actuator under different trajectories are obtained. Finally, the motion stability of each actuator is evaluated, and the best scheme is selected. ,e results show that the best input scheme can be selected according to different trajectories, so as to improve the performance of the parallel mechanism. To the authors’ knowledge, no one has done any research on selecting the appropriate input scheme according to the trajectory of the end effector....
It is easy to realize that most robots do not move to the desired endpoint (Tool Center Point (TCP)) using high-resolution noncontact instrumentation because of manufacturing and assembly errors, transmission system errors, and mechanical wear. is paper presents a robot calibration solution by changing the endpoint trajectories while maintaining the robot’s control system and device usages. Two independent systems to measure the endpoint positions, the robot encoder and a noncontact measuring system with a high-resolution camera, are used to determine the endpoint errors. A new trajectory based on the measured errors will be built to replace the original trajectory. e results show that the proposed method can significantly reduce errors; moreover, this is a low-cost solution and easy to apply in practice and calibration can be done cyclically. e only requirement for this method is a noncontact measuring device with high-resolution and located independently with the robot in calibration....
With the continuous emergence and innovation of computer technology, mobile robots are a relatively hot topic in the field of artificial intelligence. It is an important research area of more and more scholars. The core of mobile robots is to be able to realize real-time perception of the surrounding environment and self-positioning and to conduct self-navigation through this information. It is the key to the robot’s autonomous movement and has strategic research significance. Among them, the goal recognition ability of the soccer robot vision system is the basis of robot path planning, motion control, and collaborative task completion. The main recognition task in the vision system is the omnidirectional vision system. Therefore, how to improve the accuracy of target recognition and the light adaptive ability of the robot omnidirectional vision system is the key issue of this paper. Completed the system construction and program debugging of the omnidirectional mobile robot platform, and tested its omnidirectional mobile function, positioning and map construction capabilities in the corridor and indoor environment, global navigation function in the indoor environment, and local obstacle avoidance function. How to use the local visual information of the robot more perfectly to obtain more available information, so that the “eyes” of the robot can be greatly improved by relying on image recognition technology, so that the robot can obtain more accurate environmental information by itself has always been domestic and foreign one of the goals of the joint efforts of scholars. Research shows that the standard error of the experimental group’s shooting and dribbling test scores before and the experimental group’s shooting and dribbling test results after the standard error level is 0.004, which is less than 0.05, which proves the use of soccer-assisted robot-assisted training. On the one hand, we tested the positioning and navigation functions of the omnidirectional mobile robot, and on the other hand, we verified the feasibility of positioning and navigation algorithms and multisensor fusion algorithms....
Deburring is recognized as an ideal technology for robotic automation. However, since the low stiffness of the robot can affect the deburring quality and the performance of an industrial robot is generally inhomogeneous over its workspace, a cell setup must be found that allows the robot to track the toolpath with the desired performance. In this work, the problems of robotic deburring are addressed by integrating components commonly used in the machining industry. A rotary table is integrated with the robotic deburring cell to increase the effective reach of the robot and enable it to machine a large workpiece. A genetic algorithm (GA) is used to optimize the placement of the workpiece based on the stiffness of the robot, and a local minimizer is used to maximize the stiffness of the robot along the deburring toolpath. During cutting motions, small table rotations are allowed so that the robot maintains high stiffness, and during non-cutting motions, large table rotations are allowed to reposition the workpiece. The stiffness of the robot is modeled by an artificial neural network (ANN). The results confirm the need to optimize the cell setup, since many optimizers cannot track the toolpath, while for the successful optimizers, a performance imbalance occurs along the toolpath....
Loading....